Haykosui BicHuK Monicca Ne 2 (18), 2019

Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

UDC 001.895:330.341.1

V. I. Chubaievskyi, Candidate of Political
Sciences,

K. O. Palahuta, Candidate of Economic
Sciences, Associate Professor,

A. M. Desiatko, Senior Lecturer

TECHNOLOGIES OF MULTILEVEL
STRUCTURES MODELLING
ON THE EXAMPLE OF THE PROBLEM
OF COMPLETING PRODUCTS

Urgency of the research. One of the typical tasks
encountered in the de-signing of intelligent systems is
modelling of the multilevel structures for solving various
applied problems.

Target setting. Consideration the possibilities of the
language of artificial intelligence Visual Prolog for the
implementation of recursive technology-based on the example
of solving a multi-level task of product configuration.

Actual scientific researches and issues analysis. Such
scientists as Biletsky O. B., Lytvyn V. V., Chery S., Gottlob G.,
Luger G. F., Russell G.F. made significant contribution to the
development of the theory, methodology of artificial
intelligence application for solving problems in the field of
economics.

Uninvestigated parts of general matters defining.
At the same time, insufficient scientific works highlight the
features of the introduction of modern means of artificial
intelligence for solving multilevel economic problems.

The research objective. Analyze existing approaches to
solving multi-level tasks. To propose an effective tool for
solving multilevel tasks using artificial intelligence language
Visual Prolog.

The statement of basic materials. The problem of
modeling of multilevel structures in intellectual systems on the
basis of iterative and recursive technologies on the example of
the problem of components is considered. The main
characteristics of such structures are presented, their
complexity is determined and the necessity of finding effective
methods for their presentation and processing in the memory
of the machine is given. There are two important paradigms in
the development of recursive technologies: functional and
logical programming. We consider the corresponding
languages of artificial intelligence: Lisp and Prolog, their heirs
and the most powerful language of Visual Prolog. The classical
well-known iterative algorithm and the recursive program on
the Prologue of solving the problem of the components of the
internal combustion engine, as well as the recursive program
on Visual Prolog, developed by the authors of the article, are
given. Their comparison is made from the position of using the
number of structures for the presentation of the information
base, the cost of memory for their preservation, the complexity
of developing and debugging the program, the ease of
perception of their work.

Conclusions. The power of the language Visual Prolog is
emphasized, which is especially manifested in the tasks of
processing multi-level structures.

Keywords: recursive technologies; Visual
language; multilevel structures.

DOI: 10.25140/2410-9576-2019-2(18)-6-14

Prolog

Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of

completing products

YK 001.895:330.341.1

B. I. Yy6aeBcbkum, K. . H.,
K. O. Manaryra, k. €. H.,
[OOLEHT,

A. M. flecaTko, CT. BuKnagau

TEXHONOTrIi MOOENIOBAHHA
BArFATOPIBHEBUX CTPYKTYP
HA NMPUKNALI 3AOAMI
KOMMIEKTALJI nPOAYKUIT

AkmyanbHicmb QdocnidxeHHss. OOHUM 3 munosux

3agdaHb, WO BUHUKalOmMb y npoueci OegopmysaHHs
iHMenekmyanbHUX cucmem, € MmodernoeaHHs
6azamopisHesux — cmpykmyp Onsl SUPIWEHHS Pi3HUX
npuknadHux 3adady.

MocmaHoeka npobnemu. Posensid moxnusocmel Mogu
wmyyHoeo iHmenekmy Visual Prolog 0na peanisayii
PeKypcusHoi mexHosnoaii Ha OcHO8i Mpuknady eupilueHHs
6azamopigHesoi 3adauyi kommnnekmauii npooykuii.

AHaniz ocmaHHix 0OocnidxeHb i nyb6nikayil. 3HayHul
8HECOK Yy pO38UMOK meopii, Memodonoeaii 3acmocysaHHs
wmy4Hoe20 iHmernekmy Orisi aupileHHs1 3aday y cghepi eKOHOMIKU
eHecriu maki e4eHi, sik bineupkut O. b., JlumeuH B. B., Yepi
C., fommnob6 I, Jlysep I". ®., Paccen C. [Jx. ma iH.

BudineHHs1 HedocliOXeHUX YacmuH 3a2aslbHof
npo6nemu. Y moli xe 4ac HeOOCMamHbO HayKosux rpaub
sucsimmolme 0cobnueocmi 8rnpPo8adKeHHs Cy4acHUX
3acobie wmy4Ho20 iHmenekmy ona BUPIWEeHHs
6azamopigHe8uUx eKOHOMIYHUX 3adauy.

locmaHoeka 3aedaHHsA. [IpoaHanizygeamu iCHytoYi
niéxodu 0o eupiweHHs bacamopieHegux 3asdaHhb.
3anposadumu echekmugHuUl iHCMpymMeHm Onsi 8UPIWEHHS
bacamopieHesux 3ag0aHb 3a OOMOMOZ20K0 MOBU WMY4YHO20
iHmenekmy Visual Prolog.

Bukiiad ocHoeH020 Mamepiainy. Po3ansiHymo npobriemy
MoOesno8aHHs b6azamopigHesux cmpykmyp 8
iHmenekmyarnbHUX cucmemMax Ha OCHO8i imepauitiHux i
PEKYyPCUBHUX MmexHosoeili Ha npukiadi 3adadyi KOMIMIOHeHMI8
npodykuji. HaeedeHo OcHOBHI xapakmepucmuKku makux
cmpykmyp, 8u3HayeHo iX cknadHicmb ma HeobXiOHicmb
rnowyky egekmusHux memoodig ix rnodaHHS ma 0bpobku &
nam'ami Komm'romepa. Y po3gumky peKypcusHUX mexHonoail €
0s8i eaxnuei napaduemu: yHKUYioOHarbHe ma Jl02iyHe
rpoepamysaHHsi. Po3ansidarombcsi 8i0rosiOHi Mogu wimy4YHO20
iHmenekmy: Lisp i Prolog, ix cnadkoemys - HaumnomyxHiwa

mosa Visual Prolog. HasedeHo knacuyHul — eidomuli
imepaujiliiHuti aneopumm | pekypcusHa rpozpama Ha Mosi
Prolog posg'sisaHHs ~ 3adadi KOMroHeHmig OsuzyHa

8HYMPIWHBO20 320PSIHHSA, @ MaKoX PeKypcusHa rpospama Ha
Visual Prolog, po3pobrieHa asmopamu cmammi. IX nopieHsiHHSI
3p0br1eHO 3 ro3uuii BUKOpUCMAaHHS KibKkocmi cmpykmyp 0nsi
npedcmasneHHs1 iHghopmauitiHoi 6a3u, eapmocmi nam'smi ons
ix 36epexeHHs, CcKraOHocmi pPOo3PObKU | HanacodKeHHs
rpoepamu, npocmomu criputiHIMmsi pobomu.

BucHoeku. [lidkpecroembcsa nomyxHicms mosu Visual
Prolog, sika ocobnueo nposienissiembcsi 8 3adadax 0b6pobKu
6azamopigHesux cmpykmyp.

Knroyoei cnoea: pekypcusHi mexHonoeii, moea
npoepamysarHs Visual Prolog; 6azamopigHesi cmpykmypu.

(D) et |

Haykosui BicHuK Monicca Ne 2 (18), 2019 Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

Urgency of the research. One of the typical tasks encountered in the designing of intelligent
systems is modelling of the multilevel structures for solving various applied problems. Such structures
are characterized by the variable amount of levels in the hierarchy and the amount of elements in
every level depending on one or another object of the calculation; by a repeatability of the procedures
which are carried out in the processing of the elements of every level of this hierarchy; by their
significant size and complexity of the implementation of the procedures that leads to the considerable
spending of resources and, as a result, to the searching for the effective methods of their presentation
and processing in the machine memory.

Calculation tasks based on such structures can be solved by implementing traditional branched
and cyclical processes using the appropriate standard programming language operators (iterative
programs). But involving of the recursive procedures in such calculations significantly changes the
computing technology which is typical for the methods of artificial intelligence and ultimately can cause
the additional positive results, such as simplification and universality of the algorithms.

Actual scientific researches and issues analysis. A lot of workings and publications are devoted
to the recursive computing technologies and programming [1; 3; 4; 5; 7; 8; 9; 10]. Historically, these
technologies have been developing on the basis of two important paradigms — the functional
programming and the logical one. The functional programming began with the creation and realization
of the Lisp language, and the logical one — with the Prolog language. An important feature of these
languages is the focus not on the numerical processing, but on the character one. Therefore, data
structures, which are supported by these languages, are not limited by the arrays. Lists are the basic
structure of data which are maintained both by the Lisp language and by the Prolog one [3].

The presentation of data and programs in the Lisp language in the same form allows, if it is
necessary, to interpret data as a program. It gives the opportunity for some Lisp programs to generate
other programs, that characterizes the Lisp language as a flexible one. The programming model,
involved in the Lisp language, had proved to be so good, that many other languages, including Erlang,
APL, ML, Scala (multiparadigmal language), Haskell, and so on, were established on the principles of
the functional programming.

Prolog is the most famous example of the logical programming language. It is characterized by a
higher level of abstraction. The Lisp language allows a programmer not to care about the dynamic
allocation of the memory for the lists, but the Prolog language, in addition, contains the built-in
mechanisms of management of the program fulfillment. Because of that, the Prolog program, to a
greater extent, is the declarative description of the subject area relations. Implementation of the
programs implies the processes of setting the questions from the subject area and the automatic
searching for the answers with the help of the built-in mechanisms of the logical output. Such
approach is possible because Prolog originates from the logic of predicates. Prolog is based on Horn
clauses (a subset of first-order logic) [3]. There are different versions of the Prolog language, such as
Turbo-Prolog, GNU Prolog and other. A constantly updated overview of the Prolog realizations can be
found at: http://dmoz.org/Computers/Programming/Languages/Prolog/ Impementations [4]. To the list
of the latest most interesting products it should be added Visual Prolog, the possibilities of which will
be further involved in this work.

The Prolog language does not contain the direct way of carrying out the repetition with the help of
such constructions as FOR, WHILE, REPEAT, which are used in the Pascal, Basic or C languages.
Prolog provides only two types of repetitions. There are rollback and recursion. Recursion is the
process in which a function calls itself. Recursion has three main advantages: it can express the
algorithms, which cannot be comfortably expressed by any other means; in the logical meaning it is
simpler than iteration; it is widely used in the lists processing. There are few forms of recursion, such
as simple recursion, parallel branching of recursion, mutual recursion, recursion of a higher order. In
Prolog, tail recursion is often used and optimized in order to minimize the memory consumption on its
implementation.

Let us further consider the problem of modeling multilevel structures on the example of solving the
problem of breaking up the structure of complex products, also sometimes defined as the problem of a

- 7
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of [ev-tc |

completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019 Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

product mix. The essence of this task is to determine the quantitative inclusion of components and
elements in the product, has a multilevel structure.

The complexity of this task allows to try various automatized solutions: approaches, methods and
programming technologies. In the case of implementation of these solutions by a lot of methods, later
it is possible to conduct a comparative analysis and define the abilities of the applied approaches.

Consider the possibilities of the language of artificial intelligence Visual Prolog for the
implementation of recursive technology-based on the example of solving a multilevel task of product
configuration.

The research objective.

1. Analyze existing approaches to solving multilevel tasks.

2. To propose an effective tool for solving multilevel tasks using artificial intelligence language
Visual Prolog.

The statement of basic materials. Let us consider the solution of the component problem based
on the one hand application of simple procedures using procedural and object-oriented language
technologies (Pascal, C, C ++, etc.) And on the other hand, 3anponoHysatu

We will base on two approaches, which have the features of two relevant methodologies and are
historically famous:

- solving the task of the building component products, proposed by O. B. Biletsky and V. S. Mykhailov [2];

- solving the component task by the Prolog language, proposed by S. Ceri, G. Gottlob, L. Tanka [10].

Note that this is the same task, although they are called differently and relate to different subject areas.

We will consider the proposed solutions on the example of the car engine components (Fig. 1),
which is given in the book by S. Ceri [10].

The main property of complex products is the multilevel occurrence of simple elements in more
complex ones. The mathematical analogue of such a structure is a finite graph without contours. A
graph (G, X) is a collection of (X) elements — vertices and their relations — arcs (G).

The vertices of the graph correspond to the elements of the structure of the finished product, and
the arcs correspond to the occurrence of lower level elements in the above. The weight of the i-th arc
gi quantitatively characterizes the occurrences. Arcs are directed from products to their elements.

A vertex into which no arc enters is called a root. Vertices from which no arc extends are called
leaves. The graph of the structure of production can be, for example, the design of a building, an
airplane, a bridge, a power station, etc. The sets of the graph can be divided into tiers. In this set it is
possible to distinguish nodes, which are called parents, and his subordinates - brothers, and each of
them is the son of the father of the family [2].

Engine (1)
[
Sparkplug (4) Cylinder (4) Crankshaft (1)
\ |
Piston (1) Conn.rod (1) Joint (8)
Screw Gasket screw bolt Bolt Screw
2 3 (4) (4) (20) (10)

Fig. 1 The components of the internal combustion engine

To calculate the entry of components and elements into products, it is proposed in [2] to create
4 tables “Plan”, “Catalog”, “Input” and “Norm”. They implement an algorithm. We form them in
accordance with Fig. 1.

- 8
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of [ev-tc |

completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019

Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBAUII
Table 1 - Table “Plan” Table 2 - Table “Catalogue” Table 3 - Table “Input”
Ne of
Father Son Son Brother
identifier Amount Father address ;Peea identifier Input address
Engine 1 Ne of | Identifier 1 1 Sparkplug 1 2
the tier
1 Engine 1 2 Cylinder 4 3
Table 4 - Table “Norm” 1 Engine 2 3 Crankshaft 1 1
Father Amount 2 Crankshaft 6 4 Piston 1 5
identifier 3 Piston 7 5 Conn.rod 1 4
Sparkplug 1 3 Conn.rod 9 6 joint 8 6
Cylinder 4 3 joint 11 7 screw 2 8
Crankshaft 1 8 gasket 3 7
9 screw 4 10
10 bolt 4 9
11 screw 10 12
12 bolt 20 11

The explosion algorithm is performed in several stages.

At the first stage, data shown in the graph (Fig. 1) are placed according to the spreadsheets “Plan”,
“Catalogue” and “Input”.

At the second stage, the ith record of the jth tier is read from the catalogue, and sth address of a
bigger brother is determined from this record.

At the third step, the transition to the “Input” table to the sth record of the bigger brother is carried
out, the input is defined and after that is multiplied on the product value in the “Plan” table. The result
should be written in the “Norm” table.

At the fourth stage, the transition to the brothers records is fulfilled, and the same to the third stage
actions are performed.

At the fifth step, formed data in the “Norm” table are sorted, and, if it is necessary, summing up the
values of requisites with the same identifiers is implemented.

At the sixth step, data of the “Norm” table is transferred to the “Plan” table. Then, actions in
accordance with the 1-5 steps are carried out.

To implement this algorithm, it is enough to use simple procedures with the variables and arrays
determination, and to use the assignment, branching, and cycles operators.

The second approach to solve this problem contains a significantly simpler information base, which
consists of two tables. At the same time, the task is slightly expanding. Using the second table makes
it possible to calculate the total cost of the components. We give them in the form of the original.

The second approach to solve this problem contains a significantly simpler information base, which
consists of two tables. At the same time, the task is slightly expanding. Using the second table makes
it possible to calculate the total cost of the components. We give them in the form of the original.

Table 5 - Table “COMPONENT” Table 6 - Table “PRISE”

Engine Sparkplug 4 b Sparkplug 10
Engine Cylinder 4 c screw 2
Engine Crankshaft 1 c gasket 3
Cylinder Piston 1 c bolt 2
Cylinder Conn.rod 1 c
Crankshaft Joint 8 [
Piston Screw 2 b
Piston Gasket 3 b
Conn.rod Screw 4 b
Conn.rod Bolt 4 b
joint Screw 10 b
joint Bolt 20 b
hub k lah ki h |9 f
Chubaievskyi V. I, Palahuta K. O., Desiatko A. M. Technologies o
multilevel s)t/ructures modelling on the example of the problgem of (oc) EERUTN

completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019 Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

Next, we would like to present the Visual Prolog program for solving the component parts problem
presented in the book [10] with the purpose of analyzing it for errors and omissions, with subsequent
correction and extension.

lookfor(Prod,IL,FL,Factor):-

findall

(Pr1,Qty,Flag),

comp(Prod, Pr1,Qty,Flag), CL),

inquire(CL,IL,FL,Factor).
inquire([],List,List,_).
inquire([(Pr1,Qty,Flag)|TC],List,FL,Fact):-%%if%%

((Flag==c, !,

Fact=Fact is Fact*Qty,

lookfor(Pr1,List,ML,Factl));

%%elseif%%
(member((Prl,),List), !,
update(List,ML,Pr1,Qty,Fact));
%%else%%
(Q1 is Qty*Fact,
add((Pr1,Q1),List,ML),
%%anyway%%
inquire(TC,ML,FL,Fact).
update([(N,Q1)|T],[(N,Q2)|T],N,Q,Fact):-
Q2 is Ql+Q*Fact.
update([H|T],[H|T1],N,Q,Fact):-
update(T,T1,N,Q,Fact).
add(E,[1.[E]).
add(E,[H,T],[E[[H[T]]).
member(H, [H|_]).
member(E,[_[T]):- member(E,T).

costs(Prod,Cost):- lookfor(Prod,[],FL,1),
examine(FL,Cost).
examine([],0).
examine([E1,Numb)|T],Cost):-
price(E1,Costl),
examine(T,Cost2),
Cost = Cost1*Numb+Cost2.
goal
%lookfor(engine,[],FL,1).
costs(engine,Cost).

Fig. 2 Prolog program for solving the problem of components
Source: [10]

We give an explanation of the main predicates of the program (Fig. 2). The comp predicate (prod1,
prod2, qty, flag) states that the product prodl contains the gty of instances of the components prod2.
The flag flag takes two values: “b” in the case when the prod2 component is defined by a leaf node
(simple) “C” in the case when it is complex, that is, the inner top of the tree.

The program for finding elementary components is launched using the lookfor goal with the
variable Prod, which determines the name of the product, must be analyzed.

The variable IL, which defines the list when the program starts, takes the value of a blank list, and
the Factor variable determines the number of products that need to be exploded. In our case, it has
the value 1.

- 10
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of [ev-tc |

completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019 Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

The variable FL is a list and is used to place the results of the program. Each element in this list is
complex and defines the name of the component and its quantitative input in the product. For
example, in order to recognize in a quantitative measure the components from which the engine is
composed, it is enough to start the target:

? lookfor(engine,[],FL,1).

The Lookfor Rule uses the Findall special predicate to find the filial (child) components Prl for the
parent product or the Prod component, together with the value of the Flags attribute and the number of
their occurrences Qty.

The rule inquire performs decomposition of the Prl component in the case when Flag is equal to
"c", or (otherwise) modifies the number of occurrences in the original list or adds a new element to it
with the definition of a quantitative occurrence.

The predicate costs calculates the total cost of the given component.

Note that the book contains a request for the execution of this program and the result of its work. It
seems that it is a well-established and working program. But with a more thorough consideration of it,
there are doubts about its performance, regardless of the developed qualitative structure, determined
at a high level of recursive procedures, their content and implementation.

Here are some errors and problems:

a lot of typos, for example, it is written Fact, but it is necessary Factl,; it is necessary Fl, and there
is MI; need | and worth a coma

more significantly, the built-in predicate Findall requires a task in it of one input variable or structure
for the formation of a list, but in the program three variables of the various types are used,;

indefinite domains and predicates, but in the version of the Prolog system in which the program
was then developed, it might not have been necessary to do it. In today's conditions, in particular, in
the Visual Prolog environment, the program will not work and therefore there is a need for its
refinement;

the program partially determines the ways of propulsion the algorithm on the tree components
nodes, and when moving in the opposite direction from the leaves-nodes to the root node are
generally not defined resulting in the wrong answer;

when propulsing the algorithm on the node tree components, the size of the ancestor node in some
cases is not calculated at all, which also leads to an incorrect answer.

The authors of the program (Pic. 3) have corrected the following errors.

For the correct organization of the Findall operator, the domains component object strukt3 = struk3
(prod, kol, priz), in which its elements respectively determine the value of the component name,
guantity and attribute, are either simple or complex. Based on this object, the list-object list3 and the
CL variable were created.

The program also uses the composite object strukt2 = struk2 (prod, kol) and the list2 object list.
This object is used in the defining of variables for the formation and placement of output data in the
lists of IL, FL and others.

To form a list of nodes for advancing the component tree, the conv predicate (CL, STV, STECV)
was created, which performs the concatenation of a part of the list of unprocessed specific top-level
nodes STV and a list of certain nodes of the lower level CL formed by a special Findall predicate.

To calculate the component weights (as the product of the number of components of the current
node and the components of the ancestor nodes) two gorp predicates (FACTOR, CL, ITOG) and cong
(STG, ITOG, STECG) were created, the first of which generates a list of nodes horizontally at the
current level and calculates their weights are in the ITOG variable, and the second adds the ITOG list
to the main STG list. Fig. 4 shows the request for the formation of the list of components and their
guantity required to create the product (engine).

Copyright (c) 1984 - 2000 Prolog Development Center A/S
***/domains

up,down=symbol

dup=up;down

prod = symbol

- 11
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of

multilevel structures modelling on the example of the problem of [ev-tc |
completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019 Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

priz=symbol
kol,ff,cena=integer
struk3=struk3(prod,kol,priz)
struk2=struk2(prod,kol)
list3=struk3*
list2=struk2*
predicates
comp(prod,struk3)
lookfor(prod,list3,list2,list2,list2,ff)
inquire(list3, list2,list2,list2,ff,dup)
member(struk2,list2)
update(list2,list2,prod,kol,ff)
add(struk?,list2,list2)
costs(prod,cena)
examine(list2,cena)
price(prod,cena)
conv(list3,list3,list3)
cong(list2,list2,list2)
gorp(ff,list3,list2)
clauses
lookfor(Prod,STV,STG,IL,FL,FACTOR):-
findall(P, comp(Prod,P), CL),
gorp(FACTOR,CL,ITOG),
cong(STG,ITOG,STECG),
conv(CL,STV,STECV),
inquire(STECV,STECG,IL,FL,FACTOR,down).
inquire([],SG,List,List, _,).
inquire([struk3(Prl1,Qty,FLAG)|TC],SG,List,FL,Fact,Move):- %%if%%
FLAG=c,Move=down,!,Factl=Fact*Qty,lookfor(Prl,TC,SG,List,FL,Factl);
FLAG=c, Move=up, I comp(Y,struk3(Pr1,Qty,FLAG)), member(struk2(Y,NFACT),SG),
Fact1=Qty*NFACT, lookfor(Pr1,TC,SG,List,FL,Factl);
%%elseif%%
member(struk2(Prl,),List), !, update(List,ML,Pr1,Qty,Fact), inquire(TC,SG,ML,FL,Fact,up);
%%else%%
Q1 = Qty*Fact, add(struk2(Pr1,Q1),List,ML),
%%anyway%%
inquire(TC,SG,ML,FL,Fact,up).
update([struk2(N,Q1)|T],[struk2(N,Q2)|T],N,Q,Fact):-
Q2 = Q1+Q*Fact.
update([H|T],[H|T1],N,Q,Fact):-
update(T,T1,N,Q,Fact).
add(E,[],[E]).
add(E,[HIT],[E|[H|T])).
member(struk2(Pr1,Kol),[struk2(Pr1,Kol)|Tail]).
member(struk2(E,Kol),[_|Tail]):-
member(struk2(E,Kol), Tail).
conv([],L,L).
conv([X|L1], L2,[X|L3]):-
conv(L1,L2,L3).
cong([],S,S).
cong([X|S1], S2,[X|S3]):-
cong(S1,52,S3).
gorp(Fact,[],[]).
gorp(Fact,[struk3(Prl1,Qty,Flag)|TC], [struk2(Pr1,Q1)|T]):-

Q1=Qty*Fact,
- 12
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of [ev-tc |

completing products

Haykosui BicHuK Monicca Ne 2 (18), 2019

Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

gorp(Fact, TC,T).

costs(Prod,Cost):- lookfor(Prod,[],[struk2(engine,1)],[],FL,1),
examine(FL,Cost) , write (FL),nl,

write(Cost).
examine([],0).
examine([struk2(E1,Numb)|T],Cost):-
examine(T,Cost2),

Cost = Cost1*Numb+Cost2.
comp(engine,struk3(sparkplug,4,b)) .
comp(engine,struk3(cylinder,4,c)) .
comp(engine,struk3(crankshaft,1,c)).
comp(cylinder,struk3(piston,1,c)).
comp(cylinder,struk3(conn_rod,1,c)).
comp(piston,struk3(screw,2,b)).
comp(piston,struk3(gasket,3,b)).
comp(conn_rod,struk3(screw,4,b)).
comp(conn_rod,struk3(bolt,4,b)).
comp(crankshaft,struk3(joint,8,c)).
comp(joint,struk3(screw,10,b)).
comp(joint,struk3(bolt,20,b)).
price(sparkplug,10).
price(screw,2).
price(gasket,3).
price(bolt,2).

goal
%lookfor(engine,[],[struk2(engine,1)],[],FL,1).
costs(engine,Cost).

price(E1,Costl),

Fig. 3 The final working program of the solution of the problem of component products

[struk2("bolt",176),struk2("gasket",12),struk2("screw",104),struk2("sparkplug",4)]

636Cost=636
1 Solution

Fig. 4 Result of implementation of the program for request costs (engine, Cost)

Conclusion. Considered two approaches to the solution of the problems of components indicate
their relevance and the need to use in solving the problems of this class.
In the first case, the information base requires more advance preparation. The algorithm of the

solution and the program built on its basis is based on a larger number of arrays, increases the
memory expenses for their preservation and complicates the development and debugging of the
program. But at the same time, from the point of view of the ease of perception of the work of the

program, it increases its value.

In the second case, the high power of the Visual Prolog language allows you to form concise

programs of high expressiveness.

The power of Visual Prolog is particularly evident in the tasks of processing hierarchical and multi-
layered structures. A good example of this is the task in this article.

References

1. Adamenko, A. N., Kuchkov, A. M. (2003). Logicheskoe
prohrammirovanye i Visual Prolog [Logic programming
and Visual Prolog]. Saint Petersburg: BHV - Petersburg
[in Russian].

2. Biletsky, O. B., Mikhailov, V. S. (1983). Orhanyzatsyonno-
tekhnolohycheskye osnovy ASU v stroytelstve [Organizational
and technological foundations of the ICS in construction].
Kyiv: Budivelnik [in Russian].

3.Bondarev, V. N., Ada, F. G. (2002). Artificial Intelligence
[Iskusstvennyi intellekt]. Sevastopol: Publishing House of

13

Nitepatypa

1. ApameHko, A. H. Jlormyeckoe nporpamMmupoBaHvue W
Visual Prolog / A. H. Agametnko, A. M. Kyykos — CI16. : BXB
— lMeTtepbypr, 2003. — 992 c.

2. Buneukmn, O. B. OpraHusaynoHHO-TEXHONOrMYeCcKne
ocHoBbl ACY B ctpoutensctBe / O. bB. buneukun,
B. C. Muxannos. — K. : bByaisenbHuk, 1983. — 120 c.

3. boHpapeB, B. H. VcKycCTBEHHbIN MHTENNEKT: yvyebHoe
nocobne pans BY3oe / B. H. Bongapes, ®. . Age.
— CeBactonons : M3g-Bo CeBHTY, 2002. — 615c.

4. Bratko, |. Prolog. Programming for Artificial Intelligence.

Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of

multilevel structures modelling on the example of the problem of

completing products

(D) et |

Haykosui BicHuK Monicca Ne 2 (18), 2019

Scientific bulletin of Polissia Ne 2 (18), 2019

IHHOBALIT

SevNTU [in Russian].

4. Bratko, 1. (2004). Prolog. Programming for Artificial
Intelligence. London, United Kingdom: «Addison Wesley»
[in English].

5. Glybovets M. M., Oletsky, O. V. (2002). Shtuchnyi intelekt
[Artificial intelligence]. Kyiv: Publishing House "KM Academia"
[in Ukrainian].

6.Kavun, S. V., Korotchenko, V. M. (2007). Systemy
shtuchnoho intelektu [Artificial Intelligence Systems].
Kharkiv: KhNEU [in Ukrainian].

7.Lytvyn, V. V., Pasichnyk, V. V., Yatsishyn, Y. V. (2009).
Intelektualni systemy [Intelligent Systems]. Lviv: Novyi Svit
[in Ukrainian].

8.Russel, S. G., Norvig, P. (2006). Artificial Intelligence.
A modern approach. New Jersey: «Upper Saddle River»
[in English].

9.Luger, G. F. (2008). Atrtificial Intelligence: Structures and
Strategies for Complex Problem Solving. London: «Addison
Wesley» [in English].

10. Ceri, S., Gottlob, G., Tanca, L. (1990). Logic
Programming and Databases (Surveys in Computer Science).
(Softcover reprint of the original 1st ed.). Springer-Verlag
Berlin Heidelberg [in English].

BioniorpadciuHuit onuc ANA ULUTYBaHHA :
Chubaievskyi, V. I.

London, United Kingdom: «Addison Wesley», 637 (2004).

5. MnMuboseup, M. M. LUTYy4YHWIA iHTENEKT: nigpyy. AN cTya.
BUW,. HaBY. 3aknagis / M. M. nn6oeeub, O. B. Oneubkui.
— K. : Bua. gim «<KM Akagemisi», 2002. - 366 c.

6. KaByH, C. B. Cwnctemu LWTY4YHOrO iHTENEKTY: HaBu.
noci6./ C. B. KaByH, B. M. KopoTtuyeHko. — Xapbki : XHEY,
2007. - 320c.

7. utBuH, B. B. IHTenekTyanbHi cuctemu: nigpyyHuk /
B. B. JluteuH, B. B. MaciyHuk, HO. B. AunwuH. — Jlbeie : HoBuin
cBiT, 2009. — 406 c.

8. Russel, S. G., & Norvig, P. Atrtificial Intelligence.
A modern approach. New Jersey, USA: «Upper Saddle River»,
1408 (2006).

9. Luger, G.F. Atrtificial Intelligence: Structures and
Strategies for Complex Problem Solving. London, United
Kingdom: «Addison Wesley», 863 (2008).

10. Ceri, S., Gottlob, G., Tanca, L. Logic Programming and
Databases (Surveys in Computer Science) Softcover reprint of
the original 1st ed, Springer-Verlag Berlin Heidelberg (1990).

Received for publication 17.06.2019

Technologies of multilevel structures modelling on the example of the problem of completing

products / V. I. Chubaievskyi, K. O. Palahuta, A. M. Desiatko // HaykoBuii BicHuk Moniccsi. — 2019. - Ne 2 (18). — C. 6-14.

Yy6aeBcbkun NONITUYHMX

Bitanin IBaHoBuY

KkaHoupaT Hayk,

ynpaBriHHA PO3BUTKY

DOLEeHT
3aCTynHUK HavanbHuka [enapTameHTy
iHdbopmaLifHMX

kadpegpu nporpamMHoi iHXeHepii Ta kibepbesneku,
iHbOopMaLiHO-aHanITUYHOT NIATPUMKM — HavanbHUK
TEXHOMOriN HauioHanbHoi noniuii Ykpainu,

NOSKOBHWK Moniuii, KNiBCcbkuii HaLioHanNbHUA TOProBeslbHO-eKOHOMIYHWIA YHIBEPCUTET;
https://orcid.org/0000-0001-8078-2652;
E-mail:chubaievskyi_vi@knute.edu.ua;

Chubaievskyi Candidate of Political

Vitaliy Ivanovich

Support - Head of

Sciences,
Engineering and Cybersecurity, Deputy Head of the Department of Information and Analytical
the Department of

Associate Professor at the Department of Software

Information Technology Development of the

National Police of Ukraine, Police Colonel, Kyiv National University of Trade and Economics;
https://orcid.org/0000-0001-8078-2652;
E-mail:chubaievskyi_vi@knute.edu.ua;

Manaryta €KOHOMIYHUX

KaTtepuHa OnekciiBHa

KaHouoat Hayk,

[AOLEHT,
Kibepbesneku, KniBcbknii HalioHanbHWIN TOProBenbHO-eKOHOMIYHUI YHIBEPCUTET;

[oueHT kadbegpu nporpamHoOl iHXeHepii Ta

https://orcid.org/0000-0003-1167-9509;

ResearcherID:N-2928-2016;
E-mail:palagutaea@ ukr.net;
Palahuta
Katerina Alekseevna

Candidate of Economic Sciences, Associate Professor at the Department of Software Engineering
and Cybersecurity, Kyiv National University of Trade and Economics;

https://orcid.org/0000-0003-1167-9509;

ResearcherID:N-2928-2016;
E-mail:palagutaea@ ukr.net
cTapLinm

OecaTko kadeapu

AnboHa MukonaiBHa

BUKnaga4

nporpaMHoi ilkeHepii Ta kibepbesnekn, KuiBCbkui

HauioHanbHWIA TOProBeribHO-eKOHOMIYHUI YHIBEPCUTET;

https://orcid.org/0000-0002-2284-3418;

ResearcherID:N-2873-2016;
E-mail:desyatko@knute.edu.ua;
Desiako
Alona Mykolayivna

Senior Lecturer at the Department of Software Engineering and Cybersecurity, Kyiv National
University of Trade and Economics;

https://orcid.org/0000-0002-2284-3418;

ResearcherlD:N-2873-2016;
E-mail:desyatko@knute.edu.ua.

completing products

- 14
Chubaievskyi V. I., Palahuta K. O., Desiatko A. M. Technologies of
multilevel structures modelling on the example of the problem of

mailto:chubaievskyi_vi@knute.edu.ua
mailto:chubaievskyi_vi@knute.edu.ua
https://publons.com/researcher/N-2928-2016/
mailto:palagutaea@ukr.net
https://publons.com/researcher/N-2928-2016/
mailto:palagutaea@ukr.net
https://publons.com/researcher/N-2873-2016/
mailto:desyatko@knute.edu.ua
https://publons.com/researcher/N-2873-2016/
mailto:desyatko@knute.edu.ua

